Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Sci Signal ; 16(789): eadg5470, 2023 06 13.
Article in English | MEDLINE | ID: covidwho-20233822

ABSTRACT

Clinical presentations that develop in response to infection result from interactions between the pathogen and host defenses. SARS-CoV-2, the etiologic agent of COVID-19, directly antagonizes these defenses, leading to delayed immune engagement in the lungs that materializes only as cells succumb to infection and are phagocytosed. Leveraging the golden hamster model of COVID-19, we sought to understand the dynamics between SARS-CoV-2 infection in the airways and the systemic host response that ensues. We found that early SARS-CoV-2 replication was largely confined to the respiratory tract and olfactory system and, to a lesser extent, the heart and gastrointestinal tract but generated a host antiviral response in every organ as a result of circulating type I and III interferons. Moreover, we showed that diminishing the response in the airways by immunosuppression or administration of SARS-CoV-2 intravenously resulted in decreased immune priming, viremia, and increased viral tropism, including productive infection of the liver, kidney, spleen, and brain. Last, we showed that productive infection of the airways was required for mounting an effective and system-wide antiviral response. Together, these data illustrate how COVID-19 can result in diverse clinical presentations in which disease outcomes can be a by-product of the speed and strength of immune engagement. These studies provide additional evidence for the mechanistic basis of the diverse clinical presentations of COVID-19 and highlight the ability of the respiratory tract to generate a systemic immune defense after pathogen recognition.


Subject(s)
COVID-19 , Animals , Cricetinae , SARS-CoV-2 , Viremia , Antiviral Agents , Brain
2.
Nat Rev Microbiol ; 21(3): 178-194, 2023 03.
Article in English | MEDLINE | ID: covidwho-2243357

ABSTRACT

SARS-CoV-2, the virus responsible for the COVID-19 pandemic, has been associated with substantial global morbidity and mortality. Despite a tropism that is largely confined to the airways, COVID-19 is associated with multiorgan dysfunction and long-term cognitive pathologies. A major driver of this biology stems from the combined effects of virus-mediated interference with the host antiviral defences in infected cells and the sensing of pathogen-associated material by bystander cells. Such a dynamic results in delayed induction of type I and III interferons (IFN-I and IFN-III) at the site of infection, but systemic IFN-I and IFN-III priming in distal organs and barrier epithelial surfaces, respectively. In this Review, we examine the relationship between SARS-CoV-2 biology and the cellular response to infection, detailing how antagonism and dysregulation of host innate immune defences contribute to disease severity of COVID-19.


Subject(s)
COVID-19 , Interferon Type I , Humans , SARS-CoV-2 , Immune Evasion , Pandemics , Interferons , Interferon Type I/pharmacology , Immunity, Innate
3.
J Virol ; 96(15): e0076522, 2022 08 10.
Article in English | MEDLINE | ID: covidwho-1992938

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A virus (IAV) represent two highly transmissible airborne pathogens with pandemic capabilities. Although these viruses belong to separate virus families-SARS-CoV-2 is a member of the family Coronaviridae, while IAV is a member of the family Orthomyxoviridae-both have shown zoonotic potential, with significant animal reservoirs in species in close contact with humans. The two viruses are similar in their capacity to infect human airways, and coinfections resulting in significant morbidity and mortality have been documented. Here, we investigate the interaction between SARS-CoV-2 USA-WA1/2020 and influenza H1N1 A/California/04/2009 virus during coinfection. Competition assays in vitro were performed in susceptible cells that were either interferon type I/III (IFN-I/-III) nonresponsive or IFN-I/-III responsive, in addition to an in vivo golden hamster model. We find that SARS-CoV-2 infection does not interfere with IAV biology in vivo, regardless of timing between the infections. In contrast, we observe a significant loss of SARS-CoV-2 replication following IAV infection. The latter phenotype correlates with increased levels of IFN-I/-III and immune priming that interferes with the kinetics of SARS-CoV-2 replication. Together, these data suggest that cocirculation of SARS-CoV-2 and IAV is unlikely to result in increased severity of disease. IMPORTANCE The human population now has two circulating respiratory RNA viruses with high pandemic potential, namely, SARS-CoV-2 and influenza A virus. As both viruses infect the airways and can result in significant morbidity and mortality, it is imperative that we also understand the consequences of getting coinfected. Here, we demonstrate that the host response to influenza A virus uniquely interferes with SARS-CoV-2 biology although the inverse relationship is not evident. Overall, we find that the host response to both viruses is comparable to that to SARS-CoV-2 infection alone.


Subject(s)
COVID-19 , Coinfection , Cross-Priming , Influenza A Virus, H1N1 Subtype , Influenza, Human , SARS-CoV-2 , Virus Replication , Animals , COVID-19/immunology , COVID-19/mortality , COVID-19/virology , Coinfection/immunology , Coinfection/virology , Cross-Priming/immunology , Humans , Influenza A Virus, H1N1 Subtype/immunology , Influenza, Human/immunology , Influenza, Human/virology , Interferons/immunology , Mesocricetus/immunology , Mesocricetus/virology , SARS-CoV-2/growth & development , SARS-CoV-2/immunology , Virus Replication/immunology
SELECTION OF CITATIONS
SEARCH DETAIL